Академик Виктор Васильев: «Если потратишь жизнь на математику, то ты ее не зря прожил»

Виктор Васильев и Михаил Гельфанд

Виктор ВасильевВиктор Анатольевич Васильев родился в 1956 году в Москве. Окончил мехмат МГУ в 1978 году, аспирантуру МГУ (под руководством В. И.Арнольда) в 1981 году. С 1995 года работает в МИАН, главный научный сотрудник Отдела геометрии и топологии; с 2008 года — профессор факультета математики НИУ ВШЭ. Виктор Анатольевич с 2010 года возглавляет Московское математическое общество; член экспертной комиссии РСОШ по математике, академик РАН. Сфера интересов: топология, теория особенностей, интегральная геометрия, комбинаторика, теория сложности вычислений.

Про политику

— Мы можем разговаривать про две вещи: математику и политику. Поскольку я в математике ничего не понимаю, наверное, придется про политику.

— Про политику я ничего не понимаю.

— Это хорошо. Я тоже, поэтому мы в равном положении. Когда мы в этой же комнате беседовали с Мишей Цфасманом, он в конце сказал, что темперамент ему не позволяет делать какие-то сильные политические жесты. А Вам позволяет?

— Не знаю. Разве я что-то делал такое? Особенно ничего.

— Те, кто делал что-то особенное, уже профессиональные политики. Если их не учитывать, то оказывается, что Вы делали сильно больше других. Скажем, Ваша фотография перед автозаком — вполне фольклорная. Это не тривиальное гуляние по Москве, когда ходили десятками тысяч, это было перед судом, куда приходили уже совершенно сознательно и конкретно. Я пытаюсь правильно сформулировать вопрос и не очень могу, что-то как у Мольера: «Кой черт понес его на эти галеры?» Что Вас мотивировало?

— Я не знаю. Как-то стыдно было, да.

— «Да» — что?

— Взять и не пойти.

— А как Вы узнали? Про суд, про место?

— Из «Фейсбука».

— У меня была аналогичная ситуация: уже когда судили Вас, то тоже было стыдно не пойти — такая цепная реакция. Вам штраф потом присудили?

— Присудили.

— Вы его заплатили?

— Заплатил.

— Сами?

— Я заплатил, конечно, из своих, но, если посчитать людей (их было много), которые мне предлагали скинуться заплатить, я бы мог сделать очень хороший бизнес. Но все-таки я человек достаточно обеспеченный по нашим временам.

Про учебники

— Вы довольно долго были председателем академической комиссии по школьным учебникам.

— Да.

— Что, я подозреваю, дело менее яркое, но не менее захватывающее, чем демонстрации.

— Да, там были сюжеты. Люди ходили с адвокатами…

— На заседания комиссии или потом?

— Они в основном Козлова (В. В. Козлов, вице-президент РАН. — Прим. ред.) пугали адвокатами.

— Козлов был председателем комиссии по всем учебникам, а Вы — по математике?

— Да. Мы, представители всех дисциплин, собирались, докладывали свои дела, потом дела как-то утверждались, и с этим что-то происходило.

— Удавалось делать что-то разумное?

— Да.

— То есть это был хороший инструмент?

— Да, хотя намного меньше того, чего хотелось бы. Было какое-то количество авторов, про которых сразу понятно, что они ничего хорошего никогда написать не смогут. Их удавалось задержать на три-четыре года. Но потом это всё равно продавливалось, потому что наши полномочия заключались только в математических ошибках. Я представляю очередной список, они их исправляют, и рано или поздно всё заканчивается. А то, что человек не понимает, для чего это всё нужно и как всё связано, нам говорить запрещалось.

— Потому что вы не педагоги, а математики.

— Да. Была отдельная педагогическая комиссия, которая потом, когда произошла революция, зарубила всё.

— Революция?

— Вышел новый регламент экспертизы, пошла новая политика, когда стали рубить учебники, например, по причине непатриотичности. Какой-то не наш Винни-Пух в задачах…

— Что не отменяет математических ошибок. Это мог быть дополнительный фильтр у педагогов, но он не влиял на деятельность комиссии.

— Тогда зарубили хорошие математические учебники. Произошла глобальная подковерная революция, когда главный наш почти что монополист — издательство «Просвещение» — приобрел нового начальника по имени Аркадий Ротенберг.

— Я помню, в Общественном совете Минобрнауки в это время тоже были большие обсуждения.

— Так совпало, что их конкурентов после этого стали выносить уже без стеснения.

— Что же все-таки случилось с академической комиссией? Или ее просто перестали спрашивать?

— Я тогда резко взбрыкнул, в частности по поводу нового регламента экспертизы (см. http://atlmrf.livejournal.com/11075.html. —Прим. ред.). Я демонстративно ушел, ко мне уже даже не подходили по этому делу, и всё заглохло.

— То есть поставлен эксперимент, который показал, что комиссия была работоспособна только благодаря одному человеку.

— Довольно долго всё работало. Даже плохие учебники, которые в конце концов проходили, становились лучше. Одно дело — учебник изначально, другое дело, когда мне удавалось исправить в нем, допустим, 360 ошибок за четыре года.

— Сколько народу реально работало в комиссии, то есть действительно тратили заметное время?

— У меня в комиссии таких и не было. Я был один, но просил разных людей помочь. Сначала за смешные деньги, потом, когда наверху убедились, что от нашей деятельности есть прок, стали платить деньги, которыми стало можно кого-то соблазнять.

— Фактически Вы координировали рецензентов?

— Я на самом деле такой гениальный менеджер, так хорошо могу организовывать людей, что потом большую часть приходится самому переделывать. Довольно долго я работал в таком режиме. Было несколько человек, которые работали более-менее хорошо. Под самый конец, последние два года, у меня случилась удача: я связался с надежными и добросовестными людьми из Дубны, связанными с ОИЯИ. Жизнь там ухудшается, но все-таки цены областные. Им платили московские деньги, и они оказались очень заинтересованы. Работа пошла, я разгрузился. Но я как-то подсчитал, что за это время сам прочитал 250 учебников.

— «Прочитал» надо понимать как «внимательно прочитал»?

— Внимательно прочитал, в частности прорешал задачи. Некоторые не до конца, а до сотой ошибки (или до шестидесятой, когда был полный завал с учебниками).

— Есть такой иезуитский способ: каждый раз до шестидесятой ошибки дочитывать, а про все остальные ничего не говорить, чтобы побольше итераций было.

— У меня просто сил не было дальше читать. Как-то раз за лето надо было прочитать тридцать три учебника. То есть их дали шестьдесят девять, тридцать шесть я раскидал по рецензентам, а тридцать три не раскидал. У меня было на учебник три дня. Вот тогда я на кофеин подсел и никак не могу от этого избавиться.

— При такой работе можно подсесть и посерьезнее. Опять тот же вопрос: что за мотивировка, чтобы этим заниматься?

— У меня дети были в школе в это время, и я заметил, что с наибольшим рвением я относился к учебникам того класса, в котором они будут учиться на следующий год. Но не только. На самом деле такая контрольная деятельность вредна для психики. Выслеживать кого-то, ловить, ущемлять… Приходилось как-то себя мотивировать.

— Мотивировать, чтобы заниматься, или, наоборот, чтобы не превратиться в совсем жандарма и не радоваться на каждый новый ляп?

— Сначала я мотивировал ловить, поймать, не допустить. Потом начал стараться, чтобы это не переросло в доминанту. Но все-таки заставлять себя таким делом заниматься довольно трудно. Я строил себе какие-то картинки, воображал поле, заполненное детьми, в первых рядах даже какие-то лица прорисовывал. И вот я перед ними стою и защищаю их от мерзости, которая на них наступает. В общем, это был такой опыт… Ой, я разоткровенничался.

— Хорошо-хорошо.

— Противно было, как-то надо было себя заставлять.

— Вот сейчас мы члены президиума ВАК: я — по наукам о жизни, Вы — по естественным наукам, а встречаемся на заседаниях по гуманитарным наукам. Зачем Вы туда ходите?

— Вам помогать. Лично Вам и Диссернету.

— Теперь Вы вместо детей представляете себе одинокого сражающегося меня?

— Не Вас одинокого. Вы, одиноко сражающийся за нашу науку; бедные студенты, которых эти придурки будут потом учить. Ну как же Вам не помочь?

Про занятия математикой

— Попробую спросить про математику. Есть ли разница в мотивировках для занятий математикой сейчас, тридцать лет назад и сто лет назад? Тридцать лет назад Вы уже по собственному опыту знаете, а сто лет назад — предположительно.

— Я сейчас другой человек. Тридцать лет назад у меня с мотивировками было гораздо проще: все кругом занимаются, компания хорошая.

— Мало ли хороших компаний?

— Ну, я родился в такой семье, мне было внушено, что если потратишь жизнь на математику, то ты ее не зря прожил. Не зря потратить жизнь — это, собственно, главная мотивировка для людей.

— Сейчас мотивировка изменилась?

— В общем, нет. Сейчас, конечно, возможностей больше, но для меня всё равно лучший способ потратить жизнь — это заниматься математикой и ее преподаванием, потому что мне сильно перестраиваться на что-то другое уже поздно. А это дело хорошее, дети такие хорошие у нас растут, просто замечательные.

— А разговоры про то, что студент пошел не тот?

— Понимаете, мы у себя в Вышке (на факультете математики Высшей школы экономики. — Прим. ред.) снимаем сливки. Те, кто попадает к нам, они очень хорошие. Может, даже получше, чем когда-то были. Некоторые просто совершенно замечательные ребята.

— За счет улучшения процедуры снятия сливок, или что-то поколенческое? Или просто человечество становится умнее?

— Я не знаю. Конечно, наше факультетское начальство разумное, оно и сливки разумно снимает.

— Нет ощущения, что все умные дети уехали?

— Очень много умных детей уехало, но не все. Многие остаются, кто-то уезжает-приезжает. У нас полфакультета преподавателей — это люди, которые уехали и вернулись. «Полфакультета» — это, конечно, не строго. Я не знаю, сколько в процентах, но очень много.

— А у них какая мотивировка, чтобы заниматься математикой?

— Ой, очень сложно. Тут жизнь идет.

— То есть в значительной степени мотивировка тоже социально-психологическая? У меня-то ощущение, что чисто генетическая: в каждом поколении есть процент людей, которые ничего другого не могут.

— Да, конечно. Среди самых талантливых детей видно, что это дети от бога.

— Откуда они приходят?

— По-разному. Довольно много сильных детей приходит из СУНЦа.

— То есть Колмогоровский интернат или московские математические школы. Бывают совсем самородки, которые в лаптях приходят неизвестно откуда? В биологии так бывает. Я видел таких детей, которые вообще непонятно откуда взялись.

— Нет, совсем в лаптях если бывают, то очень редко. В основном через интернат или сильные региональные школы. У нас есть несколько таких рассадников.

— От чего это зависит? Появляется хороший учитель?

— Да.

— Получается чистое везение: если человек живет в городе, где есть хороший учитель, то у него есть шанс; а если в городе, где нет хорошего учителя, то никто и не узнает. Как у Марка Твена: самый гениальный полководец — сапожник, который никогда не воевал, потому что хромал и его не взяли в армию.

— Так и есть, к сожалению. Очень много людей пропадает, судя по статистике.

— Вы говорили, что поздно перестраиваться, слишком много времени уйдет на переобучение. А если пофантазировать? Если вдруг все-таки перестроиться, то что бы было?

— Не знаю.

— Дело не в том, что тяжело перестраиваться, а в том, что не хочется?

— Математика мне подходит еще и по темпераменту, потому что в других областях очень много значит уметь себя поставить, надо быть борцом. А в математике если показал, что умеешь решать задачи, то вот ты уже и умеешь.

— Скорее не решать задачи, а придумывать.

— Ну да, и придумывать. Всего понемножку.

— Я понимаю, что Вы имеете в виду. Чтобы заниматься экспериментальными науками, надо уметь деньги выцыганивать. Гранты писать.

— Между прочим, все 1990-е годы я, опять-таки, как великий менеджер, писал гранты. У меня было некоторое количество групп, на которые я писал заявки, а потом писал отчеты.

Виктор Васильев и Михаил Гельфанд

Про математику

— Продолжая линию дурацких вопросов: что интересного сейчас происходит в математике? Или про математику нельзя так спрашивать?

— Можно. С одной стороны, есть области, которые быстро растут, в них работает много сильных людей, которые выводят это дело на новый уровень абстракции, связывают с чем-то. Такая область развивается. С другой стороны, время от времени решаются старые классические задачи, причем часто за счет того, что обнаруживается удивительная связь с иной областью математики.

— Например?

— Примерно полгода-год назад украинско-немецкая девочка (Марина Вязовская. — Прим. ред.) решила знаменитую задачу про упаковки шаров, которая стояла много лет. В восьмимерном пространстве некоторая упаковка действительно является оптимальной, совершенно не улучшаемой. Причем решено это было за счет соображений из функционального анализа, теории представлений и теории модулярных форм. Я немножко смотрел: не только ее работа, но и всё, что ей предшествовало, — совершенный восторг.

— Почему именно в восьмимерном?

— Восьмерка здесь вообще священное число. Восьмерка в этой науке появляется очень часто. В теории решеток, то есть периодических структур, есть теорема, что только в размерностях, кратных восьми, бывают решетки с некоторыми исключительными свойствами. И вот про такую решетку в восьмимерном пространстве сразу было видно, что она замечательная, что в соседних размерностях ничего подобного нет. Тогда возникло предположение, что она будет задавать оптимальную упаковку, но доказать это долгое время было невозможно.

— А в соседних размерностях нет ничего интересного, только тривиальные решения? Или, наоборот, нет никакого решения?

— Вообще непонятно, что делать. Там хаос, нет приличных гипотез. Есть экспериментальные факты, есть какие-то простые оценки, которые с двух сторон, но далеки друг от друга. А здесь оценки совпали.

— Есть банальные примеры таких задач: теорема Ферма и гипотеза Пуанкаре. А менее банальные?

— Ситуаций, чтобы задача долго стояла и потом чудесным образом решалась, я в последнее время, пожалуй, не припомню. Другой пример на ту же тему: долго добивали задачу о размерности три. Там другое: добит ответ, совершенно очевидный, при помощи работы десятка людей, с компьютерными экспериментами. Они оценивали-оценивали какие-то хвосты и все-таки оценили.

— Это кеплеровские укладки, гексагональная и кубическая?

— Да.

— Про них тоже долго не было доказано, что они оптимальные?

— Да. Дожали сравнительно недавно. Это пример силового решения проблемы, когда жали-жали традиционными методами и таки дожали. Но это очень далеко от того, чем я занимаюсь. Где я занимаюсь, даже не знаю, чем Вас порадовать.

— А чем Вы занимаетесь?

— Я в последнее время занимаюсь неизвестно чем. Потому что я и раньше занимался много чем, а сейчас мои последние работы строятся по одному образцу, довольно дурному. Ко мне обращаются из какого-нибудь журнала, что вот, мол, мы делаем юбилейный или памятный номер; не можете ли Вы нам что-нибудь написать. И, как правило, бывает понятно, на какую примерно тему. Я начинаю вспоминать, что раньше делал в данном направлении. В конце концов вспоминаю,
что, когда я этим занимался, была у меня мыслишка, мол, что же они все не понимают такой-то вещи. И раз просят, то можно про это написать. Время от времени решаются задачи, на которые я тогда забил.

Мой любимый результат: ему уже, правда, три года, его я мечтал доделать 25 лет. У меня был некоторый прорыв в 1987 году, и потом я долго пытался дальше что-то сделать. Задача в двумерном случае восходит к Ньютону. Про нее писали разные работы, но все в двумерном случае. Как раз в 1987-м праздновали 300-летие главной книги Ньютона, Арнольд стал по этому поводу Ньютона изучать, наткнулся на эту задачу и поставил ее так: а нельзя ли подобное сделать в старших размерностях. Он поставил задачу на семинаре и еще попросил почему-то именно меня это сделать. Через какое-то время получилось пробить это в каких-то частных случаях, например в выпуклом случае.

— Что все-таки за задача?

— Из интегральной геометрии. У нас в сколько-то мерном пространстве — у Ньютона в двумерном — есть тело, ограниченная область пространства с гладкой границей. Тогда эта область определяет такую функцию на множестве всех гиперплоскостей в этом пространстве: объем, который гиперплоскость отсекает от тела в ту или другую сторону.

— То есть в двумерном случае мы имеем плоскую фигуру, рассматриваем все прямые, которые ее пересекают, и соотношение площадей с одной и с другой стороны?

— Не соотношение, а берем одну и другую площадь. Получается двузначная функция. Что это будет за функция? Будет ли она алгебраическая? Знаменитая теорема Ньютона состоит в том, что в двумерном случае функция не может быть алгебраической: не существует нетривиального полинома, который обращается в ноль, когда в него подставлены параметры гиперплоскости и отсеченные объемы.

— Надеюсь, в двумерном случае я смогу понять.

a, b, c — это коэффициенты уравнения прямой, а еще есть V — площадь отсеченной части.

V1 и V2.

— Да (рис. 1). Функция V (a, b, c) была бы алгебраической, если бы существовал такой многочлен P (a, b, c, V), который не равен тождественно 0, но обращается в 0 каждый раз, когда V является одной из площадей, отсеченных прямой с коэффициентами a, b, c. Но такого многочлена не существует. Вот такая теорема.

Рис. 1
Рис. 1

— Ньютон умел это доказывать?

— Да, по тогдашним стандартам строгости он научился доказывать в двумерном случае. Интересно, что Архимед немножко раньше доказал, что в трехмерном-то случае функция будет алгебраической, например, для сферы. А в двумерном случае алгебраичности нет.

— Даже для окружности?

— Ни для чего нет. Не существует такого тела, чтобы это было алгебраично. А Архимед доказал, что для сферы в трехмерном пространстве, тем самым для эллипсоида — немножко поковырявшись, легко понять, что для любого эллипсоида в любом нечетномерном пространстве, — алгебраичность будет.

— В каких терминах Архимед формулировал? Он же не знал слова «многочлен».

— Но он явно вычислил. Теорема Архимеда состоит вот в чем. Мы берем сферу и отсекаем от нее луночку плоскостью, которая проходит на расстоянии r от центра. Архимед вычислил объем этой луночки. Надо взять эту сферу, погрузить в цилиндр, а рядом еще поставить конус с таким же основанием, как у цилиндра (рис. 2).

219-0032

Рис. 2
Рис. 2

— То есть фактически два радиуса.

— Тогда утверждается, что объем части цилиндра, лежащей под плоскостью, равен сумме объема луночки и усеченного конуса.

— А высота конуса?

— Высота конуса — R (радиус сферы), основание — 2R.

— То есть теорема состоит в том, что дополнение к лунке в этой шайбе равно объему усеченного конуса.

— Да.

— И тем самым полином понятно какой.

— Да, расстояние до центра алгебраически выражается через уравнение плоскости.

Так вот, уютный случай был для выпуклых тел, а теперь я доказал и для невыпуклых, и всё это методом выхода в комплексную область. Что произошло со времен Ньютона — люди научились выходить в комплексную область. И теперь кто попало может доказывать такие теоремы. В 1987– 1988 годах у меня получилось для выпуклых, а потом я хотел доделать это для произвольных тел в четно-мерном пространстве. Я несколько раз брался, а в 2013 году в некоторый момент у меня раз — и всё сложилось. Бывают такие моменты. Я до сих не перестаю радоваться на результат. Да, забавно, что последний гвоздь в доказательстве тоже из теории решеток.

— Сейчас это доказано в четномерном случае для всех, а в нечетномерном — неверно, потому что есть контрпримеры?

— Да. В нечетномерном случае есть задача доказать, что алгебраичность имеется только для эллипсоидов. Тут тоже у меня тогда были какие-то продвижения. Но вот так, чтобы всё сложилось и доказалось, что, кроме эллипсоидов, ничего нет, не получается.

Всё интервью с «Математических прогулок» можно прочитать на:
www.skoltech.ru/mathwalks/
http://iitp.ru/ru/press_center/walks

Виктор Васильев
Беседовал Михаил Гельфанд
Фото М. Ефимовой
Рисунки Е. Гнучих по эскизам В. Васильева

2 комментария

  1. Примерно полгода-год назад украинско-немецкая девочка (Марина Вязовская. — Прим. ред.) решила знаменитую задачу про упаковки шаров, которая стояла много лет.
    ——————-
    «Девочке» уже 32 года.

  2. Уведомление: Для чего нужна математика? Геометр Виктор Васильев — о своей науке, просветительской роли математиков и о том, как фальсифицируют исслед

Добавить комментарий

Ваш адрес email не будет опубликован.

Оценить: